Cummins-ORNL\ Emissions CRADA: NO_x Control & Measurement Technology for Heavy-Duty Diesel Engines, Self-Diagnosing SmartCatalyst Systems

W.P. Partridge (PI), M. Salazar, J.A. Pihl Oak Ridge National Laboratory

N. Currier (PI), S. Joshi, A. Yezerets, K. Kamasamudram, Cummins Inc.

Presenter: **Bill Partridge Oak Ridge National Laboratory**

DOE Vehicle Technologies Office Annual Merit Review & Peer Evaluation Meeting June 9, 2016 Washington, DC

DOE Managers: Gurpreet Singh, Ken Howden, Leo Breton

This presentation does not contain any proprietary, confidential, or otherwise restricted information

project ID: ACE032

Overview

Timeline

- Year 1 of 3-year program
- New 3-year CRADA extension
- Builds on FY13-FY15 R&D

Budget

- 1:1 DOE:Cummins cost share
 - In-kind Cummins contribution
- FY16 DOE Funding: \$300k
 - Task3: Cummins CRADA on Diesel Emissions Control
 - Part of ORNL project: "Enabling Fuel Efficient Engines by Controlling Emissions" (2015 VTO AOP Lab Call)

Barriers

- From DOE VT MYPP:
 - 2.3.1.B: Cost-effective emission control
 - 2.3.1.C: Modeling for emission control
 - 2.3.1.E: Emissions-control durability

Partners

- ORNL & Cummins Inc.
- CLEERS
- Queen's Univ. Belfast
- Univ. of Chem. & Tech. Prague

Objectives & Relevance

Objectives

- Enable & improve Predictive Catalyst-Performance Models
 - Based on controlling physics & chemistry
 - Independent of specific application platform (e.g., truck, bus, boat, power)
- Characterize spatiotemporally distributed catalyst performance
 - Investigate ageing impacts (performance at different catalyst states)
 - Validate & improve models
 - Mine data & insights for OBD & control methodologies
- Develop methods for real-time catalyst-state assessment

Relevance

- Predictive models enhance engine-catalyst-system performance
 - Design improved design tools, more reliable analysis-led design
 - Development faster & lower cost process, reduced component cost & size
 - In-Field Use improved control, OBD, efficiency & durability
 - Enables improved emissions compliance & improved fuel economy
 - CLEERS Priority Survey ranks SCR aging mechanisms & models #4 (/64)
- Advances DOE goals for improving catalyst cost, modeling & durability

CRADA Approach

CRADA

Spatiotemporally Resolved Experiments

CRADA

Data

SS & Transient

Knowledge

Reaction network, Property correlations

CRADA

Structuring & validation of Predictive Models

Better models for improved design tools, OBD & control

Understanding performanceparameter correlations

Insights for better modeling, control & OBD

Ideas for Control & OBD

Enables improved efficiency, reliability & durability

Clean, Fuel-Efficient, Durable

Engines in the Marketplace

Cummins Development

Improved Durability & Performance

Improved Design Tools

Reduced Size & Cost

Better Control & OBD

Milestones

Completed all 2015 Milestones:

✓ Q2: Assess distributed performance of Field-Aged commercial SCR catalyst

✓ Q3: Present CRADA ageing insights at CLEERS Workshop

On track for meeting 2016 R&D objectives:

- Develop Step-Response method for determining catalyst-state parameter
- Assessment & development of predictive catalyst performance model
- Investigate common aspects of dynamic inhibition

Technical Progress: Overview

Enabling SmartCatalyst Systems

Tools & Models for better Design, OBD & Adaptive Control

Impacts of Field-Ageing & Adaption Methods

- Field-Aged sample compared to DeGreened
 - Lower SCR conversion and Total NH₃ Capacity
 - Same Dynamic NH₃ Capacity and adsorption energetics
 - Can use same adsorption model with scaling factor

Are insights from FA-1 generally applicable?

Concept for catalyst-state assessment

Spaci data allows critical model assessment

FY 2016

5

201

Tech.Prog.: Similar Impact from two Field-Aged Catalyst Samples

Are FA-1 insights (2015 AMR) applicable to other Field-Aged (FA) samples?

- Will a single predictive model work for different Field-Aged samples?
- Commercial 2010 Cummins, Cu/SAPO-34 SCR catalysts
 - Different field exposures; unknown exposure details; normal ageing profiles
 - Value real-world on-road use; data to critically assess predictive model
- Two different field-aged samples show similar performance response
 - Field ageing degrades conversion & Total NH₃ Capacity (TC)
 - Same capacity utilization correlations (cf. Backup Slides)
 - Does not change absorption energetics (cf. Operando Isotherms)

Similarities suggests FA-1 insights are applicable to other FA samples

Tech.Prog.: Field Ageing does not Practically Impact NH₃ Adsorption Energetics

Operando isotherms

- Measured under SCR-reaction conditions: NO_x + NH₃
- vs. 'neat' studies: without NO_x
- Shape of 2-site Langmuir
 - cf. neat CLEERS studies
- Selective adsorption-site ageing would change shape
 - ΔEnergetics → ΔShape

- Similar NH₃ adsorption energetics for three catalyst states: DG, FA-1 & FA-2
 - Same shape at a given temperature
 - Compliments CLEERS work (ACE032)
 - Neat isotherm studies; SSZ & SAPO
 - CRADA provides operando & ageing

Simplifies modeling of aged samples

- Field ageing reduces number of sites
- But adsorption occurs in same way
- Use same model with scaling factor

Need to determine catalyst state

– i.e., age-dependent TC & scaling factor

Tech.Prog.: Transient Response Measurement of Catalyst State

- DC, UC & TC capacity components determined from 4-Step Protocol
 - UC varies with catalyst state
 - UC & TC variations are related
 - Use to measure catayst state

- Protocol not practical for on-road use
- NH₃ step response to probe UC variations
 - SCR continues with NH₃>NO
 - Could implement via dosing control

Use for active catalyst-state determination

- Determine factors for feedback
 - e.g., **TC** scaling factor for predictive-model
- Enable OBD & adaptive control

Tech.Prog.: Stepped SCR Dosing to Determine TC Scaling Factor

- Many challenges remaining
 - What pulse & characteristic to use
 - Correlations with catalyst state & factors
 - Use probe pulse or natural drive-cycle dynamic?

Approach for practical catalyst-state assessment
Pathway for thru-life OBD & feedback-enabled adaptive control

Tech.Prog.: Validating Cummins Kinetic-Model Structure; P1/2

Goal: develop a predictive model to determine the catalyst's internal state

- Cummins' base predictive model is very complex
 - Many ways to structure & numerous model parameters to fit/determine
 - Developed based on integral DeGreened catalyst measurements
 - Run in AVL Boost
- Predictive model modifications for FA-2 sample
 - Reduced SCR reaction pre-exponential (impacts conversion and DC distributions)
 - Reduced integral TC (impacts TC & UC distributions)
- Model accurately predicts conversion distributions within the catalyst
 - Ability to predict intra-catalyst distributions a rigorous assessment test
 - Particularly for catalysts with internal storage functions like SCR and LNT

Tech.Prog.: Validating Cummins Kinetic-Model Structure; P2/2

- Model accurately predicts internal NH₃ capacity utilization
 - In different catalyst states: DG & FA-2
 - Relationships between TC, DC & UC components
 - Supports pathway for catalyst-state assessment; i.e., via UC measure

Predictive model rigorously validated vis-à-vis conversion & capacity distributions

- Confirms that model's internal workings are structured & fit properly
- Enhances confidence in its use to design OBD & reduce design margins

Next step is assessing transient performance

Responses to 2015 Review Comments

FY2015 AM5 Review (5 Reviewers; max score: 4)

Numerous	Positive	Comments:

- "excellent approach," "results always great"
- "solid technical accomplishments"
- "excellent collaborations"
- "solid proposed work to meet a very good plan"

Recommendations:

- Include transient behavior in the study
- Transients are included in the experimental protocols, and are used for capacity analysis
- An additional transient-response protocol was developed and used this year; see results
- Future work will focus on assessing the predictive model vis-à-vis measured transients
- Identify strategies for catalyst-state assessment
 - This is a major goal of the CRADA, and is one basis for the CRADA approach
 - A specific strategy was suggested last year, and others have been demonstrated in the CRADA
 - Early work in demonstrating such a strategy is presented this year
 - Take care to avoid duplication of effort (e.g., within ORNL)
 - The CRADA works to avoid and does not duplicate efforts
 - The CRADA coordinates with CLEERS to compliment without duplicating efforts; e.g., spatially resolved ageing studies, field-aged samples, operando isotherm measurements
 - Better characterization (temp histogram) of field aged samples, and analysis of other axial & radial locations
 - The field aged samples are from real-world exposure which does not log such detailed exposure data

 The team works to maximize value and advance the CRADA & DOE goals within in budget constraints
 - Desire to know more regarding Cummins' contributions to the CRADA
 - ✓ Both ORNL & Cummins contributing to planning & analysis; Cummins leads the modeling efforts
 - Suggest including automotive OEM's in the CRADA
 - ✓ Such valuable broader input is received and incorporated via the AMR and ACEC Tech Team
 - The CRADA is a formal partnership between ORNL and Cummins

Collaborations & Coordination with Other Institutions

- Cummins
 - CRADA Partner, Neal Currier (Co-PI)
- CLEERS (ACE022, Pihl, Wednesday 4:15pm)
 - Diagnostics, analysis & modeling coordination
- UCT, Prague (Profs. Marek & Kočí)
 - N₂O formation & control studies (with CLEERS)
 - David Mráček, et al. (2015). Appl. Catalysis B: Env. 182, 109-114.
 - Petr Kočí, et al., 24th NAM, 2015.
 - David Mráček et al., CAPoC10, 2015.
- Politecnico di Milano (Profs. Tronconi & Nova)
 - Mechanistic SCR studies (with CLEERS)
 - Maria Pia Ruggeri, et al. (2015). Appl. Catalysis B: Env.I 166, 181-192.
 - M.P. Ruggeri, et al. CAPoC10, 2015.
- Queen's University, Belfast (Prof. Alex Goguet)
 - Spatially resolved methods and analysis
 - Kevin Morgan, et al. (2016). ACS Catalysis 6, 1356-1381.
- Publications, Presentations & Recognition
 - 3 Archival Journal Publication, 4 Presentations
 - Invited journal publication & presentation
 - Spaci-approach highlighted on ACS Catalysis cover

Remaining Challenges & Barriers, and Proposed Future Work

Major Challenge: Improved catalyst Efficiency, Cost, Durability, OBD & Control Solution: Develop Predictive Models & methods for Catalyst-State Assessment

- Spatially & temporally resolved intra-catalyst performance distributions
- Apply for model development & mine correlations for control strategies

Challenges

Approach\Future Work (FY16-18):

Sensing catalyst state

- Determine state-dependent parameters and variations throughout catalyst-system life
- Improved OBD

Life-optimized catalyst performance

 Enable through-life adaptive control based on sensor feedback

New insights to advance primary modeling & state-sensing objectives

Develop practical diagnostic methods

- Advance insights from Pulse\Step-Response method
- Investigate other transients and response features
- Identify how to use natural drive-cycle features

Develop robust physicochemical predictive models

- Validate distributed transient performance
- Adjust internal structure & complexity as required
- Assess vis-à-vis other SCR catalysts & aged states

Further detailed characterization & analysis

- Incorporating & comparing to CLEERS data
- Threshold aspects of dynamic inhibition
- Radial & axially distributed ageing impacts

Work supports predictive model & state-sensor development for enabling improved catalyst efficiency, control, durability & cost

Summary

Relevance

- CRADA work enables improved catalyst knowledge, models, design & control
- This reduces catalyst system costs & required engine-efficiency tradeoffs
- This in turn enables DOE goals for improved fuel economy

Approach

- Develop & apply diagnostics to characterize catalyst nature
- Analyze data to understand mechanistic details of catalyst functions & ageing impacts
- Develop physicochemical predictive catalyst models based on improved catalyst knowledge

Technical Accomplishments

- Evaluate second Field Aged sample, FA-2
 - Compare distributed performance with DG & FA-1 samples; identify parameter correlations
- Demonstrate practical method for catalyst-state assessment
- Validated internal structure and fit of Cummins predictive catalyst model
 - Via distributed steady-state performance; transient assessment is next

Collaborations

- Numerous university collaborations resulting in presentations, publications and advances
- Coordination & collaboration with other DOE projects to maximize benefit

Future Work

- Apply data & insights to improve catalyst predictive models & catalyst-state assessment
- Analysis to understand transient catalyst performance & common parameter thresholds
- Evaluation of alternate ageing conditions, sample locations and catalyst types

Technical Back-Up Slides

Experimental: Catalyst, Conditions, Methods & Approach

	Commercial	State	Conditions
Catalyst	2010 CMI, Cu/SAPO-34	DeGreened	700°C , 4hrs, $10\%\text{O}_2 + 5\%\text{H}_2\text{O}$; • From front of sample B11-22
Mini-Core size	21 cells; ca. 2.45-cm	(DeG)	
	long x 0.78 wide		Prepared by CMI; • CMI date: 7-1-2014
Channel density	300 cpsi (FA2 is 400)		
Space Velocity	40,000 hr ⁻¹ Field Age		Normal ageing profileFrom front of larger sample;
NH ₃ , NO _x	200ppm, 200ppm	(FA1)	 Pretreatment at ORNL: 500°C to remove HC & S Cycling at 200, 300 & 400C to steady state
Base O ₂ & H ₂ O	10% & 5%		
Temperatures	200, 300 & 400°C		
Standard SCR	√ focus of these slides	Field Ageing (FA2)	Prepared by CMI; • Provided: 9-9-2015 • Normal ageing profileFA-2A: as received • FA-2B: High T Treatment • Baseline mix; 500°C, 2hr
Fast SCR	✓		
Diagnostic	SpaciMS & FTIR, CMI 4-Step Protocol	(1 A2)	

Tech.Prog.: Assessing Differences in Two Field-Aged Catalysts

Are FA-1 insights (2015 AMR) applicable to other field-aged (FA) samples?

- Will a single predictive model work for different Field-Aged samples?
- Commercial 2010 CMI, Cu/SAPO-34 SCR catalysts
 - Different field exposures; unknown exposure details; normal ageing profiles
 - Value real-world on-road use; data to critically assess predictive model
- Field ageing degrades conversion and Total NH₃ Capacity (TC)
 - Generally similar although different absolute impacts
 - Better FA-2 conversion consistent with greater TC
 - Similarities suggests FA-1 insights may be applicable to other FA samples
- Using data to assess Cummins' predictive models

Tech.Prog.: NH₃ Capacity Utilization Similar for Field Aged Samples

- Three NH₃ Capacity Components: Total (TC), Dynamic (DC), Unused (UC)
 - DC is fraction used during SCR; DC + UC = TC
- Field ageing has systematic impact on NH₃ capacity utilization & distributions
 - Reduces Total Capacity, TC
 - Lower SCR rate extends SCR deeper into the catalyst
 - Reduces DC-TC separation; separation occurs deeper into the catalyst
 - Reduces Unused Capacity, UC
- Ageing state and capacity utilization are correlated
 - Use capacity to determine catalyst state and state-dependent parameters

Tech.Prog.: Spaci Used to Validate Kinetic Model Structure

Adsorption Isotherm has Characteristics of 2-Site Langmuir

- NH₃ Isotherm from SpaciMS data
 - Under SCR reaction conditions
 - Isotherm has extra loss term: reaction
 - Normalized coverage shown
 - DC / (DC + UC)
 - Adsorption is faster than even Fast SCR
 - Implied by DC-TC separation at a common [NH₃] for Standard & Fast SCR (previously shown)
 - Can interpret isotherm classically

2.0E-04 Shape is like 2-site Langmuir

- See Pihl & Daw CLEERS data
 - From commercial SSZ-13 SCR
 - Model fit with uniform partitioning between the ca. 80 & 30kJ/mol sites
- Distinct knee at low NH₃ partial pressure
- Isotherm flattens at higher temperature
 - Typical nature for Langmuir isotherm

Field Ageing Does Not Change Dynamic NH₃ Inhibition

- Dynamic inhibition at SCR start
 - Observed in catalyst front for all samples
 - Observed above consistent [NH₃] limit
 - \gtrsim 165ppm [NH₃] at 300°C
 - \gtrsim 125ppm [NH₃] at 400°C
 - 400°C more sensitive
 - Due to faster reaction or less accessible DC?
 - More sensitive to spillover from Higher-E S2 sites, which are more dominant at high-T
 - Impacts NO & NH₃ adsorption parameters

Tronconi, Cat.Today 105, p529; describes dynamic inhibition

- 'modified redox (MR) SCR rate law'
- Depends on T, C_{NO}, θ_{NH3} & C_{O2}

$$r_{\text{NO}} = \frac{k'_{\text{NO}} O' \exp\left(-\frac{E_{\text{NO}}}{RT}\right) C_{\text{NO}} \theta_{\text{NH}_3}}{1 + k'_{\text{NH}_3} \frac{\theta_{\text{NH}_3}}{1 - \theta_{\text{NH}_3}}} \left(\frac{p_{\text{O}_2}}{0.02}\right)^{\beta}$$
(12)

- r_{NO}: rate of DeNOx reaction
- E_{NO}: Activation energy for DeNOx reaction
- C_{NO}: gas phase concentration of NO
- θ_{NH3}: surface coverage of NH₃
- k_{NO}: pre-exponential factor for DeNOx reaction rate constant
- K_{NH3}: NH₃ rate parameter
- p_{O2}: O₂ partial pressure
- S1: redox site for O₂ & NO adsorption/activation
- S2: acidic site for NH₃ adsorption
- Suggests inhibiting NH₃ & NO interactions not impacted by FA
 - Abundance of S2 vs S1 sites
 - i.e., NH₃ spillover from S2 to S1 is equivalent in DG & FA; even with lower FA TC
 - Consistent with lower NH₃ vs. NO capacity
 - Consistent with separate S1 & S2 sites
 - Can lose many S2 sites before change in NO-adsorption inhibition occurs
 - FA selectively impacts S2 sites over S1?

Dynamic NH₃ Inhibition Exist Deep Into FA-2 Catalyst Sample

Cummins 4-Step Protocol Resolves Reaction Parameters

- Step1: NO oxidation
- Step2: SS NO_x & NH₃ conversions, Parasitic NH₃ oxidation, Dynamic NH₃ capacity
- Step3: NO_x-free NH₃ oxidation, Unused NH₃ capacity
- Step4: NO oxidation, Total NH₃ capacity

Total = Dynamic + Unused

Pulsed/Step-Response Protocol

- Step1: NO oxidation
- Step2A: DC-1 from SCR with ANR=1
- Step2B: DC-2 from SCR with ANR>1 Step4: Separate determination of DC-1 + DC-2